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Summary 
A technique called relative control effectiveness 

is developed to give a quantitative measure of the 
effectiveness of each of several controls upon the 
fundamental modes of a linear dynamic system. By 
postulating linear combinations of controls, a set 
of pseudo controls is formed. The relative control 
effectiveness measure is then used to formulate a set 
of optimization problems which yield the proportions 
of the controls to be assigned to each of the pseudo 
controls with the objective that each pseudo control 
strongly affects selected fundamental modes of the 
system while only weakly affecting the remaining 
modes. 

The procedure is applied to the linearized lateral 
dynamics of a high-performance fighter airplane to 
obtain (1) a pseudo control which primarily affects 
the roll and spiral modes and (2) a second pseudo 
control which primarily affects the Dutch roll mode. 
Transient responses of the linear airplane model to 
lateral and directional aerodynamic controls and to 
the pseudo controls are presented> An example of the 
application of the procedure to airplane control with 
thrust vectoring is included. 

Introduction 
The usual definition of controllability of a linear 

A linear system is controllable by a given 
control variable if that variable can excite each 
fundamental mode of the system. (See refs. 1 
and 2.) 

If this criterion is true for a given linear system, it is 
mathematically possible to devise a control scheme 
which influences all of its fundamental modes. How- 
ever, this criterion does not indicate the degree of 
difficulty which would be experienced in generating 
such a control scheme. For example, a mode may 
be only slightly affected by reasonable, but limited, 
control deflections. Such a system would be “con- 
trollable” by the above definition but would be un- 
controllable in practice. 

What is needed is a quantitative measure of con- 
trollability which would indicate the “degree of con- 
trollability” of the system to control deflections. This 
measure could be used to compare the control effec- 
tiveness of multiple control variables upon each of 
the modes of the system and to suggest a preferred 
control structure; i.e., which control variables should 
be used to control each mode. Multiple control vari- 
ables could be mixed in linear combinations, with the 
proportions of the mixings being determined by plac- 
ing emphasis upon the quantitative controllability of 

system may be stated as follows: 

specific modes. This approach could be useful in de- 
termining control-mixing schedules in the presence of 
changing operating conditions. The technique could 
also be used to reduce the number of control channels 
in the case of multiple redundant controls (for exam- 
ple, on airplane control using multiple aerodynamic 
controls and thrust vectoring). 

A relative control effectiveness measure was de- 
veloped and is described in this report. A method 
of applying this measure to obtain control-mixing 
combinations to provide control channels which can 
(more or less) independently affect the fundamental 
modes of a linear system is presented. The method 
is applied to an example of the lateral control of 
a modern high-performance fighter airplane in low- 
speed flight. This report also includes an example 
for thrust-vectoring nozzles. 

Symbols 

A 

aci 

a71 

B 

bca 

C 

ceff 

c3 

J 

k 
M 

m 

n 

P 
T 

t 
TAS 

U 

- 
U 

V 

state variable coefficient matrix (n x n) 

real part of i th  complex eigenvalue of A 

i th  real eigenvalue of A 

control variable coefficient matrix (n x m) 

imaginary part of i th  complex eigenvalue of 
A 

m x k matrix of control-mixing vectors (c j )  

relative control effectiveness matrix (num- 
ber of modes x m) 

j t h  control-mixing vector of dimension m 

quadratic cost function’ for maximization 
problem 

number of pseudo control variables 

similarity transformation matrix (n x n) 

number of control variables 

number of state variables 

body axis roll rate, deg/sec 

body axis yaw rate, deg/sec 

time, seconds 

true airspeed, knots 

vector of control variables (u,) of dimension 
m 

vector of scaled control variables (6,) of 
dimension m 

vector of pseudo control variables (v i )  of 
dimension k 



m x m matrix of control variable authorities, 
W = diag(wi) 

symmetric matrix for maximization prob- 
lem (m x m) 

maximum value of control variable u, 

vector of state variables (z;) of dimension n 

vector of transformed state variables in 
modal coordinates (yl) of dimension n 

angle of attack, degrees 

sideslip angle, degrees 

transformed system control variable coeffi- 
cient matrix (n  x m) 

column vector formed of elements of the ith 
row of matrix I' 
element of matrix I' in the i th row and j t h  
column 

aileron deflection, degrees (positive, right 
aileron up) 

differential horizontal-tail deflection, de- 
grees (positive, right tail trailing edge up) 

rudder deflection, degrees (positive, trailing 
edge left) 

rolling thrust vector, degrees (positive, right 
nozzle up) 

yawing thrust vector, degrees (positive, 
nozzles left) 

phase angles 

transformed system state variable coeffi- 
cient matrix in block diagonal form (n  x n) 

Lagrange multiplier 

eigenvector of dimension n corresponding to 
ith complex eigenvalue of A 

eigenvector of dimension n corresponding to 
ith real eigenvalue of A 

summation over desired modes 

summation over nondesired modes 

integration variable 

bank angle, degrees (positive, right wing 
down) 

A dot over a variable (e.g., i) denotes the deriva- 
tive with respect to time. 
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Control Effectiveness Measure 
In the analysis and design of multivariable con- 

trol systems, it is customary to express the small- 
perturbation system dynamics in the form of a set of 
coupled linear first-order equations in the following 
matrix representation: 

; ir=Ax+Bu (1) 

where 
x 

u 
A 
B 

vector of state variables of dimension n 
vector of control variables of dimension m 

n x n matrix of state variable coefficients 
n x m matrix of control variable coefficients 

The state variable coefficient matrix, A, deter- 
mines the characteristics of the fundamental modes 
of the system. The control variable coefficient ma- 
trix, B ,  specifies the influence of the control vari- 
ables on the state variables. The matrix B does 
not directly indicate the controllability of the system. 
Moreover, a column of matrix B with large elements 
does not necessarily indicate that the system is in- 
fluenced by the corresponding control variable any 
more than by any other control variable. 

The controllability criteria of references 1 and 2 
can be applied to equation (1).  These criteria indi- 
cate whether it is mathematically possible to influ- 
ence all the modes of the system by manipulation of 
the control variables. If not, the criteria identify the 
modes which cannot be altered by any means. Un- 
fortunately, an ill-conditioned system may satisfy the 
controllability criteria but possess one or more modes 
which are weakly affected by all the control variables. 
Attempts to excite or modify such modes without un- 
duly upsetting the remainder of the system may be 
futile in practice. This report presents an alternative 
method of measuring controllability which includes 
quantitative information in addition to the qualita- 
tive information of the conventional controllability 
criteria. 

An indication of the influence of the control vari- 
ables upon the system modes may be obtained by 
transforming the system equations to a block diago- 
nal form 

A = M - ~ A M  = 



r = M - ~ B W  (4) 

where 

x = M y  (5) 

u = we (6) 

W = diag(wi) (7) 

The similarity transformation matrix, M, is cho- 
sen such that it is analogous to the modal matrix 
used in references 1 and 2, except that it is a real ma- 
trix. The matrix M, which is sometimes called the 
right eigenvalues of A, has real coefficients because of 
the different method of handling the complex modes. 
This choice results in the transformed state variables 
y (the modal coordinates) and the coefficient matri- 
ces A and I' also being real. 

The similarity transformation matrix, M, is as- 
sembled from the eigenvectors of A. For each real 
eigenvalue of A, one column of M is set equal to the 
corresponding eigenvector as is done in constructing 
the modal matrix. For each complex conjugate pair 
of eigenvalues of A, one column of M is set equal to 
the real part of the corresponding eigenvectors, and 
the adjacent column is set equal to the imaginary 
part of either eigenvector. In mathematical notation, 
this is 

the elements of I' give an indication of the control 
effectivenesses upon the fundamental modes, which 
is consistent with respect to  the authorities of the 
control variables. 

For a real mode, one may compare the elements 
of the corresponding row of the matrix I' to get an 
immediate comparison of the relative effects of the 
control variables upon that mode. For a complex 
mode, there is a pair of transformed state variables, 
y, and Y , + ~ ,  which are coupled. Therefore, there are 
two rows of the matrix I' to be considered. Consider 
the following second-order example: 

where the subscripts on a and b have been omitted 
for brevity. The general solution of this system may 
be written as 

i i j (~)  dr 
sin[b(t - r )  - U] 

where p,, is the eigenvector corresponding to the 
i th  real eigenvalue and p,i is a complex eigenvector 
corresponding to the i th  complex conjugate pair of 
eigenvalues. 

The matrix W has the maximum value (author- 
ity) of each of the control variables (wi = max(u;)) 
as its diagonal elements. The transformed system is 
driven by the scaled control variables ii, which have 
unity ranges ( f l ) .  

In the transformed state coefficient matrix of 
equation (3),  a7, is the ith real eigenvalue, and a,, 
and b,; are the real and imaginary parts, respectively, 
of the ith complex pair of eigenvalues. The elements 
of y, which are commonly referred to as modal 
coordinates, are indications of the excitation of the 
modes. The influences of each control variable upon 
the fundamental modes are given by the elements 
of the transformed control coefficient matrix, r, of 
equation (4). The absolute sizes of the elements of 
I' have little significance in themselves. However, 
they are useful in assessing the relative influence 
of the various control variables upon each of the 
modes. Since scaled control variables are being used, 

It is evident that the control variables influence 
the two transformed state variables in equivalent 
fashions and that this influence is proportional to 

A relative control effectiveness matrix which in- 
corporates these concepts can now be defined. For 
each real mode, the relative control effectiveness of 
the j t h  control variable upon the i th  first-order mode 
is taken to be the magnitude of the (i,j) element of 
I' divided by the Euclidean norm of the i th  row of I', 

JiK-FG7. 

For each complex mode, the relative control effective- 
ness of the j t h  control upon the (i,i + 1)th second- 
order mode is taken to be the square root of the sum 
of the squares of the (2, j )  and (i + 1, j) elements of I' 
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divided by the Euclidean norm of the i th  and ( i+l) th  
rows of I’ combined, 

through the matrix C such that 

The elements of the control coefficient matrix, I’, 
provide a somewhat direct indication of the effective- 
ness of each of the control variables in influencing 
each of the fundamental modes of the system. How- 
ever, the magnitudes of the elements are dependent 
upon the lengths of those eigenvectors used to trans- 
form the system into block diagonal form. The el- 
ements of the relative control effectiveness matrix, 
C e ~ ,  are limited to positive values between zero and 
unity and are independent of the eigenvector lengths. 
However, they do not provide any absolute informa- 
tion about the effectiveness of the controls. 

Specification of Control Crossfeeds 
Systems having multiple control effectors provide 

numerous paths by which control law schemes may 
direct signals from the operator controls and the sys- 
tem output variables to the control variables. Mul- 
tivariable design techniques, such as those imple- 
mented in reference 3, generate a large number of 
control gains. Only a few of these may be significant. 
Attempts to systematically eliminate the ineffectual 
gains have been made in references 4 through 6. 

The approach taken in the present study is first 
to find control-mixing combinations (control cross- 
feeds). A number of “pseudo” controls are formed. 
The activation of each of the pseudo controls com- 
mands proportional deflections of the system con- 
trols. Once a suitable set of pseudo controls is estab- 
lished, the design of control laws can be conducted 
by means of conventional techniques. 

For systems which have multiple, redundant con- 
trols, this procedure reduces the number of controls 
which must be dealt with in designing control laws. 
The control system structure is simplified, and the 
number of control gains is reduced. If the pseudo 
controls are formulated so that each has its effect 
concentrated upon a single selected mode, then the 
control law design problem decouples into a series of 
first- and second-order problems. In general, the de- 
coupling will not be complete but may be adequate to 
allow the utilization of a simplified control structure. 
A technique for calculating the required relationships 
between the pseudo controls and the system control 
variables is developed next. 

Define a set of pseudo control variables, v3, which 
are linearly related to the scaled control variables, G, ,  

ii = c v  = c c j v j  (15) 
j 

where the columns of C have unity length; Le., 
cTcj = 1. Combining equations (15 )  and (2) yields 
the following form for the transformed system: 

where 7: is the i th row of I’. The vectors c, are 
control-mixing combination vectors which specify the 
proportions in which the system control effectors are 
actuated. 

For each pseudo control, v,, a control-mixing 
vector, cj, is found. The effect of the pseudo control 
upon one or more modes is maximal while the effect 
on other modes is minimal. To accomplish this, the 
following maximization problem is solved. Find the 
control-mixing vector, c3, which maximizes 

subject to the constraint 

where the first term of J includes the mode(s) to 
be controlled by 7-’j (desired), and the second term 
of J includes the modes to be unaffected by vj (not 
desired). 

This constrained maximization problem is solved 
by introducing a Lagrange multiplier, A, and finding 
the combination of cj and X which maximizes the 
following expression: 

Taking the derivatives of this expression with re- 
spect to cj and X yields necessary conditions for the 
solution 

1 a J  - 
-- - - w c ,  - X C j  = 0 
2 acj 
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where 
w = 7;rT - rira T 

N D  D 

Equations (20) and (21) are in the form of an 
eigenvector decomposition problem. The control 
mixing vector, cj, is a normalized eigenvector of ma- 
trix W, with X being its associated eigenvalue. Since 
W is real and symmetric (eq. (22)), its eigenvalues 
and eigenvectors are real and orthogonal (ref. 2). By 
combining equations (19) through (22), the value of 
J is found to be equal to the eigenvalue, as follows: 

Therefore, the maximizing solution for c j  is the one 
for which the corresponding eigenvalue, A, has the 
maximum positive value. 

The technique is applied by partitioning the sys- 
tem modes into groups. A pseudo control which has 
its principal effect upon each group is to be found. 
The control-mixing matrix for each pseudo control 
is then found by solving the above eigenvector prob- 
lem. After this is accomplished, any of the usual 
multivariable control design techniques may be used 
to complete the design of the control system. 

Throughout the above analysis, it is implicitly 
assumed that the fundamental modes were equally 
important. If this is not the case, the procedure could 
be extended in a straightforward way to apply a set 
of weights to differentiate the fundamental modes. 

Example Applications 

The concept of relative control effectiveness and 
a technique to select control-mixing combinations for 
generating those pseudo control variables which prin- 
cipally affect selected modes of a system have been 
developed. This section applies these developments 
to two example flight control problems. 

Lateral-Directional Airplane Controls 

Consider the lateral control of a modern high- 
performance fighter airplane in level flight at a true 
airspeed of 165 knots with an angle of attack of 
10". This flight condition approximates the normal 
landing approach speed for the example airplane. 
The lateral perturbation model for this example (cf. 
eq. (1)) is 

-2.13 0 2.19 -12.7 
0 0.176 0 ] { i )  

0.0646 0 -0.559 1.44 
0.174 0.114 -0.985 -0.160 

1.10 4.09 
0 

-0.212 -1.20 
-0.00155 0.0330 -0.0103 

where 

p roll rate, deg/sec 

4 bank angle, degrees 

P yaw rate, deg/sec 

/? sideslip angle, degrees 

6, aileron deflection, degrees 

6, rudder deflection, degrees 

60 differential horizontal-tail deflection, 
degrees 

The block diagonal (modal) form of this system 
(cf. eqs. (2) through (8)) is 

0 -0.693 1.56 
0 -0.101 0 

L o  0 -1.56 -0.693J 

6,140 

SD 120 

-124 110 

+ [: -120 51.41 { 0.130) (25) 
38.7 -3.67 21.4 

212 23.3 

where the similarity transform matrix is 

0.805 -0.116 -0.654 0.548 
-0.591 0.988 0.437 0.233 

M =  [ 0.017 0.092 0.013 -0.107 
-0.046 0.034 0.144 0 

The authorities of the aileron, rudder, and differen- 
tial tail are 40", 30", and 20", respectively. The first 
real mode of this system is the roll mode, the second 
real mode is the spiral mode, and the complex mode 
is the Dutch roll mode. 

The relative control effectiveness matrix, C e ~ ,  is 
calculated by applying equation (13) to the first two 
rows of the control coefficient matrix, I?, appearing 
in the second term of equation (25) and by applying 
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equation 

Ceff = 

14) to the second two rows as follows: 

6, 6, 6D 
0.684 0.544 0.486 Roll 
0.312 0.874 0.373 Spiral (27) 
0.577 0.808 0.120 1 Dutch roll 

Examination of this matrix indicates that the effects 
of the three controls upon the roll mode are com- 
parable. The rudder is dominant in its influence on 
the spiral and Dutch roll modes, and the ailerons 
strongly affect the Dutch roll mode. Unless the con- 
trols are carefully proportioned, those control com- 
mands generated by either cockpit controller move- 
ments or by feedback control mechanisms will excite 
all the modes of the system and result in potentially 
undesirable intermode couplings. 

Two pseudo control variables were calculated for 
this system. It was intended that the first would have 
its principal effect upon the roll and spiral modes, 
and the second, upon the Dutch roll mode. The 
matrices for the eigenvalue decomposition problems, 
W, are calculated according to equation (22). For the 
roll and spiral pseudo control variable, q, the first 
term of equation (22) includes the first two rows of 
r, and the second term includes the second two rows. 
The calculated W matrix follows: 

3070 -55400 15200 [ 15200 -24700 13900 
W = -55400 -15300 -24700 

The eigenvalues of equation (28) are 65100, -0.1, 
and -63400. The control-mixing vector for the 
roll and spiral modes is the eigenvector of equa- 
tion (28) corresponding to the largest positive eigen- 
value (namely, 65 100). 

For the Dutch roll pseudo control variable, v2, the 
terms of equation (22) are interchanged for this ex- 
ample. The matrix W is equal to the negative of 
equation (28). Therefore, the control-mixing vector 
is the eigenvector of equation (28) corresponding to 
the most negative eigenvalue (namely, -63 400). It 
is fortuitous that both control-mixing vectors can be 
found by solving a single eigenvalue decomposition 
problem for this example. In general, a separate de- 
composition problem must be solved for each pseudo 
control variable. 

The eigenvectors found above are arranged to 
form the control-mixing matrix (cf. eq. (15)) as 
follows: 

Note that the control scale factors have been in- 
cluded in equation (29), so that Sa, S,, and SD are 
in terms of degrees of deflection, whereas the pseudo 
control variables are dimensionless with ranges of 
approximately f 1. The numerical procedure used 
to calculate the eigenvectors of equation (28) might 
cause sign inversions in any of the columns of equa- 
tion (29). It may be necessary to change the signs of 
the columns in order to obtain the desired phasing of 
the controls. 

Use of equation (25) and the control-mixing ma- 
trix of equation (29) gives the relative control effec- 
tiveness matrix for the airplane, 

0.998 0.062 Roll 

0.161 0.987 Dutch roll 
Cefi = 0.899 0.438 Spiral (30) [ v1 v2 1 

The roll and spiral modes are now principally affected 
by 01 with small coupling of the Dutch roll mode. 
This pseudo control causes the aerodynamic controls 
to be activated in a coordinated fashion. A positive 
value of 211 yields (1) aileron and differential tail, left 
surfaces trailing edge down and (2) rudder, trailing 
edge right. The Dutch roll mode is principally af- 
fected by 02 with some coupling of the spiral mode. 
This pseudo control causes crossed controls. A posi- 
tive value of v2 yields (1) ailerons and differential tail, 
left surfaces trailing edge down and (2) rudder, trail- 
ing edge left. The partial decoupling of the system 
modes improves the conditioning of the system for 
manual control and for the design of feedback con- 
trol laws. It has also reduced the number of control 
variables which must be considered in controlling the 
airplane. 

Transient responses were obtained for control step 
inputs for the two pseudo controls and for lateral 
(ailerons with differential horizontal tail) and direc- 
tional (rudder) aerodynamic controls. The control 
effector deflections used are given in table I .  These 
deflections are 10 percent of the available values. The 
time histories of the airplane state variables are pre- 
sented in figures 1 and 2. These data were obtained 
from analog computer simulations of the linearized 
dynamics of equation (24). In each case, the controls 
were deflected for approximately 6 seconds and then 
returned to their neutral positions. 

Figure l(a) shows the airplane open-loop response 
to simultaneous deflections of the ailerons and differ- 
ential tail with a 2-to-1 gearing ratio. The presence 
of the Dutch roll mode appears as a damped oscil- 
lation in the roll rate and sideslip responses. The 
slow exponential character of the spiral mode can be 
seen in all the state variables. Figure l(b) shows the 
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airplane response to rudder deflection. The airplane 
reaches a fairly steady roll rate and sideslip after an 
initial overshoot. The spiral mode is also present in 
all the state variables. 

Figure 2(a) shows the airplane response to the 
pseudo control variable ol, which was selected for 
maximum influence on the roll and spiral modes. The 
responses are quite different from those of figure l(a) . 
The presence of the Dutch roll mode is not apparent, 
the roll rate achieves a significantly greater magni- 
tude, the sideslip smoothly follows the bank angle, 
and the yaw rate responds immediately in the de- 
sired direction. 

Figure 2(b) shows the airplane response to the 
pseudo control 02, which was selected for maximum 
influence on the Dutch roll mode. These responses 
are different from those of figure l(b). The roll rate 
is seen to settle to a smaller value, and the sideslip 
angle is increased and achieves a steady value. 

Aerodynamic and Thrust-Vectoring Controls 

In this example, the mathematical model of 
the airplane was modified to include ideal thrust- 
vectoring nozzles at the extreme rear end of the 
airplane to provide additional rolling- and yawing- 
moment control capability. Each nozzle was assumed 
to be capable of changing the direction of thrust 15" 
in any direction. Rolling moments are produced by 
vectoring one nozzle upward and the other nozzle 
downward for an available deflection (C5,,,roll) of 30". 
Yawing moments are produced by vectoring the nox- 
zles simultaneously to the side for an available de- 
flection (C5,,,yaw) of 15". 

The airplane was trimmed for steady level flight at 
an angle of attack of 15" and an airspeed of 133 knots. 
This airspeed is approximately 32 knots less than the 
normal landing approach speed for flaps up, and the 
angle of attack corresponds to the maximum pitch 
attitude allowed at  touchdown to avoid tail skid. 

The control effectiveness technique was applied to 
this model to find control-mixing combinations which 
maximize the responses of the roll and spiral modes 
with minimum excitation of the Dutch roll mode. 
The technique was applied to the case in which both 
the aerodynamic and the thrust-vectoring controls 
are active and to  the case in which only the aero- 
dynamic controls are active. The calculated control- 
mixing matrices and relative control effectiveness ma- 
trices for this example are given in tables I1 and 111. 

The value of the pseudo control variable VI, which 
primarily affects the roll and spiral modes, was se- 
lected so that the deflections of all the airplane con- 
trols would be less than or equal to 15 percent of 
their authorities. These deflections are presented in 

table IV. Also included for reference is a baseline 
example which has the ailerons and differential tail 
deflected to 15 percent of their authorities. Tran- 
sient responses of the airplane (linear model) were 
obtained for step inputs of the lateral controls with 
values as given in the table. These step responses are 
presented in figure 3. 

The baseline example (fig. 3(a)) is objectionable 
for several reasons: (1) the oscillatory nature of the 
roll rate, which causes the bank angle to "ratchet," 
(2) the initial negative response of the yaw rate, 
(3) the rapid rise of the sideslip angle, and (4) the 
small constant value reached by the bank angle, 
which implies the necessity of holding a substantial 
lateral-control input in order to maintain a desired 
bank angle. This behavior of the baseline example 
can be attributed to the adverse yaw characteristic 
of the ailerons which excites the Dutch roll mode. 

Smooth increases in bank angle with well-behaved 
yaw rate and reduced sideslip are obtained by using 
mixed aerodynamic controls (fig. 3(b)) and mixed 
aerodynamic and thrust-vectoring controls (fig. 3(c)). 
The airplane turn coordination has been improved. 
The limiting control for these cases is the rudder. 
The case of figure 3(c) uses a relatively large amount 
of the yawing thrust vector to supplement the rudder. 
The rolling thrust vector is ineffective because of the 
small distance between the engine nozzles. Since it is 
ineffective, the deflection of the rolling thrust vector 
is made small in comparison with the more effective 
controls. 

The addition of thrust-vectoring controls (to the 
airplane of this example) has increased the roll rate 
capabilities of the airplane by approximately 60 per- 
cent with only a small increase in sideslip while us- 
ing moderate deflection angles. The improvement 
of the airplane response was achieved by appropri- 
ately gearing the controls without using any feedback 
loops. 

Concluding Remarks 
A method for selecting mixing combinations 

(crossfeeds) for the control variables of a linear sys- 
tem has been developed. The mixing combinations 
are chosen so that the resulting control channels have 
their principal influences on selected fundamental 
modes of the system. In the ideal case, each fun- 
damental mode would be controlled by one control 
channel independent of the others. The control de- 
sign problem would then reduce to a series of first- 
and second-order design problems. This ideal decou- 
pling is not possible in general. A series of algebraic 
maximization problems is used to find the control- 
mixing combinations which maximize the effects of 

7 



the control channels on selected modes while simul- 
taneously minimizing the effects on the remaining 
modes. 

The technique allows a reduction in the number 
of channels in the case of multiple, redundant con- 
trols. The most effective control effectors are selected 
in the proper combination for each operating con- 
dition. Given a judicious selection of modes to be 
associated with a number of pseudo controls, the re- 
sultant control-mixing combinations may transform 
the system into one which is better conditioned for 
the subsequent application of feedback control law 
design procedures. 

A quantitative measure of relative controllability 
is a product of the procedure. This measure can be 
used to assess the influence of each control variable 
on the modes of the system as well as on the relative 
effectiveness of the control-mixing combinations. 

The method was applied to the lateral and di- 
rectional control of an example airplane trimmed 
in level flight at an angle of attack of 10". Two 
pseudo control variables were calculated for this sys- 
tem. The first has its principal effect on the roll 
and spiral modes, and the second, on the Dutch roll 
mode. Use of these pseudo control variables was 
found to eliminate the oscillations present in the roll 
rate for a step lateral-control input and to improve 
the sideslip response with reduced rolling motions for 
a step directional-control input. 

The airplane model was modified to include 
thrust-vectoring nozzles which provide rolling and 
yawing control moments for use in very slow flight 
at moderate angles of attack. Yawing moments gen- 
erated by thrust vectoring significantly improve the 
roll rate capability of the airplane. The rolling mo- 
ment generated by thrust vectoring was found to be 
ineffective for the example studied. 

NASA Langley Research Center 
Hampton, VA 23665 
December 11, 1984 
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TABLE I. CONTROL DEFLECTIONS: LATERAL-DIRECTIONAL 

[a = 10"; TAS = 165 knots] 

Control 
variable 

Sa (40") 

6D (20") 

(authority) 

6, (30") 

Control deflection, degrees 
Baseline system Pseudo controls 

Lateral Directional V1 v2 

(fig. l(4) (fig. W) (fig. 2(a)) (fig. 2(b)) 
*4 *4 3.18 

*2 1.48 0.328 
*3 -2.75 *3  

TABLE 11. RELATIVE CONTROL EFFECTIVENESS: 
AERODYNAMIC CONTROLS 

[a = 15"; TAS = 133 knots] 

(a) Relative control effectiveness matrix, original controls 

6a 6r 6D 

0.220 0.886 0.409 Roll 

0.660 0.716 0.229 I Dutch roll 
0.040 0.965 0.258 Spiral 

(b) Control-mixing matrix' 

12.2 31.4 { i} = [ -;;o: :::I { :: 1 
*All values are given in degrees. 

(c) Relative control effectiveness matrix, pseudo controls 
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TABLE 111. RELATIVE CONTROL EFFECTIVENESS: 

[a = 15"; TAS = 133 knots] 

AERODYNAMIC AND THRUST-VECTORING CONTROLS 

Control Baseline Aerodynamic 
variable system controls 

6a (40") '6 2.19 

'3 1.62 

(authority) (fig. 3 (4 ) (fig. 3(b)) 

6, (30") '-4.5 

6 0  (20") -. 

&,rol l  (30") -~ 

6v,yaw - __ (15:) -~ ~-~ 

__  ~- 

(a) Relative control effectiveness matrix, original controls 

Thrust-vectoring 
controls 

2.72 

1.79 
0.304 

(fig. 3(c)) 

* -4.5 
~ -~ - 

~ 

-1.85 - __ 

67 6~ &,roi l  &yaw 

0.178 0.719 0.332 0.029 0.583 Roll 

0.583 0.633 0.202 0.074 0.461 1 Dutch roll 
0.768 0.205 0.001 0.606 Spiral 

(b) Control-mixing matrix* 

12.1 31.2 

&,roll  1.35 3.07 

*All values are given in degrees. 

&,yaw -8.24 3.84 

(c) Relative control effectiveness matrix, pseudo controls 

TABLE IV. CONTROL DEFLECTIONS: AERODYNAMIC AND THRUST-VECTORING 

[a = 15"; TAS = 133 knots] 



I-+- 1 second 

12 

r, d e g l s e c  

-12 

(a) Ailerons and differential tail (lateral controls). 

Figure 1. Response of linear airplane model to baseline controls. CY = 10". 
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-12 

lo:[ 

-12  O I  

: I  

-100 

12  

-3 

--+mi 1- 1 second 

12 

M 
C o n t r o l s  on 

( 1 ) )  R.udder (tlircctional control). 

Figure 1. Concluded. 



4 1 second 

l:I 

-100 O I  

-3 4 

-12 

100 

-12 

+----+I 
C o n t r o l s  on 

(a) Pseudo control 211 (lateral control). 

Figure 2. Response of linear airplane model to pseudo controls. a = 10". 
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1 second 

r ,  deglsec 
l:I 

- 1 2  

-3 :i 
t4----4 

Controls  on 
(b) Pseudo control v2 (directional control). 

Figure 2. Concluded. 
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1 second 

12 

r ,  deg/sec 

0 

I-+ 
C o n t r o l s  on 

+ 
C o n t r o l s  on I-----+ C o n t r o l s  on 

(a) Baseline system. (b) Aerodynamic controls. (c) Aerodynamic and 
thrust-vectoring 
controls. 

Figure 3. Responses to step lateral-control commands. a = 15". 
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